Compact Hyperbolic Coxeter n-Polytopes with n+3 Facets

نویسنده

  • Pavel Tumarkin
چکیده

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter npolytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré and Andreev.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coxeter n - polytopes with n + 3 facets

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter n-polytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann [E1] this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré [...

متن کامل

M ay 2 00 7 Compact hyperbolic Coxeter n - polytopes with n + 3 facets

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter n-polytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann [E1] this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré [...

متن کامل

Hyperbolic Coxeter N-polytopes with N + 2 Facets

In this paper, we classify all the hyperbolic non-compact Coxeter polytopes of finite volume combinatorial type of which is either a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with results of Kaplinskaja [5] and Esselmann [3] this completes the classification of hyperbolic Coxeter n-polytopes of finite volume with n + 2 facets.

متن کامل

Ju n 20 07 Coxeter polytopes with a unique pair of non - intersecting facets

We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d + 3 facets. In view of [L], [K], [E2], and [T], this implies that compact hyperbolic Coxeter polytopes with a unique pair of non-intersecting facets are completely classified. They do exist only up to dimension 6 and ...

متن کامل

Coxeter polytopes with a unique pair of non-intersecting facets

We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d + 3 facets. In view of results by Kaplinskaja [I.M. Kaplinskaya, Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces, Math. Notes 15 (1974) 88–91] and the second author [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007